

Wildfire Mitigation with Advanced Machine Learning and Optimization Techniques Prof. Nanpeng Yu

Director of Energy, Economics, and Environment Research Center

Department of Electrical and Computer Engineering

Email: nyu@ece.ucr.edu

Website: http://www.ece.ucr.edu/~nyu/

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Outline

- Machine Learning and Advanced Optimization in Smart Grid
- Applications of Advanced Machine Learning and Optimization to Mitigate Wildfire Risks
 - > Intelligent Smoke Detection with Mobile Machine Learning
 - > Partial Discharge Detection with Deep Neural Networks to Prevent Wildfire
 - > Optimal Placement of Remote Cameras for Wildfire Risk Reduction

Applications of Advanced Machine Learning and Optimization in Transmission Systems

Electricity Market Applications Price & Load Forecasting, Algorithmic Trading

Fault Location Fault Location using PMU

Equipment Monitoring Identify Equipment/Substation Problems

State Estimation Linear State Estimation Wide-area monitoring Phase angle monitoring

Model Validation Equipment, Generation, Power System

Applications of Advanced Machine Learning and Optimization in Power Distribution Systems

Spatio-temporal Forecasting Electric Load / DERs – Short-Term / Long-Term

Anomaly Detection Electricity Theft, Unauthorized Solar Interconnection

Distribution System Controls Deep Reinforcement Learning

Equipment Monitoring Predictive Maintenance Online Diagnosis

System Monitoring State Estimation & Visualization

Network Topology and Parameter Identification Transformer-to-customer, Phase connectivity, Impedance estimation

Customer Behavior Analysis Customer segmentation, nonintrusive load monitoring, demand response

Intelligent Smoke Detection Algorithm

- Increasing installation of wildfire cameras
- > Early smoke detection algorithm to mitigate wildfire
 - > Automatic, high accuracy, lightweight (avoid transmitting huge amount of video data)
 - Software and hardware upgrades on wildfire camera (<u>Smart Wildfire Camera</u>)

Edge Computing Unit: Raspberry Pi

Testing Results with Real-World Videos

Sample smoke video frames from ALERT Wildfire and corresponding LBP-motion images

Average test accuracy of the proposed & baseline approaches

Neural Network	Detection Time	Memory
MobileNetV2	0.117 ms	8.9 MB
ResNet50	0.237 ms	90.2 MB
DenseNet169	0.367 ms	49.1 MB
InceptionV3	0.216 ms	83.6 MB
InceptionResNetV2	0.492 ms	208.4 MB

The proposed MobileNetV2 has the shortest detection time the least amount of memory requirement (low cost).

Partial Discharge Detection with Machine Learning

- > Upgrading bare conductors does not solve all the problems!
- When vegetation comes in contact with covered conductors partial discharge could occur.
 - Partial discharge is small electrical spark that occurs across the surface of insulating material where the electric field strength exceeds the breakdown strength of insulator.

Output

Technical Methods and Testing Results

Stage 1: Signal Preprocessing

Optimal Placement of Wildfire Cameras

- Goal: Find the optimal placement of wildfire cameras, which achieves the maximum fire risk reduction of the target area given limited budget.
- > Optimization Problem Formulation
 - > Fire risk of a sub-region can be reduced by a certain percentage if it can be closely monitored by one or more of the wildfire cameras.
 - Magnitude of risk reduction depends on the effective monitoring range of the camera and the distance between the area being monitored and the location of the camera.
 - > The cost of wildfire camera installation and maintenance vary significantly by location.
 - > The area covered by a wildfire camera depends on the elevation of surrounding terrains.

$$\min_{\{x_i|i\in\mathscr{P}^C\}}\sum_{i=1}^N r_i\cdot \max\left(r_{min}, 1-\sum_{j\in\mathscr{P}^C} p_{ij}s_{ij}x_j\right)$$

subject to

$$\sum_{i \in \mathscr{P}^C} c_i x_i \le B$$
$$x_i \in \{0, 1\}, \quad \forall i \in \mathscr{P}^C$$

Case Study for Southern California

Test region: Riverside Country, California.

> Fire risk reduction in the test region by 36.28%.

500

The net present value of the camera network deployment and maintenance cost is \$399,841 Camera placement result with DEM

Camera placement result with fire risk map

SOUTHERN CALIFORNIA

Thank You

- > Prof. Nanpeng Yu
- Director of Energy, Economics and Environment Research Center
- Department of Electrical and Computer Engineering
- Department of Computer Science (cooperating faculty)
- nyu@ece.ucr.edu
- http://www.ece.ucr.edu/~nyu/

- 1. Jie Shi, Wei Wang, Yuanqi Gao, and Nanpeng Yu, <u>"Optimal Placement and Intelligent Smoke Detection Algorithm for Wildfire-Monitoring Cameras,"</u> *IEEE Access*, vol. 8, no. 1, pp. 72326-72339, December 2020.
- 2. Jie Shi, Wei Wang, Yuanqi Gao, and Nanpeng Yu, <u>"Detection and Segmentation of Power Line Fires in Videos,</u>" *IEEE Innovative Smart Grid Technology (ISGT) North America*, pp. 1-5, 2019.
- 3. Wei Wang and Nanpeng Yu, <u>"Partial Discharge Detection with Convolutional Neural Networks,"</u> the 16th International Conference on Probabilistic Methods Applied to Power Systems, 2020.