

Demonstration of Vehicle-Grid Integration in Non-Residential Scenarios

PowerFlex Systems - Overview

3,000+ EV CHARGIN STATIONS DEPLO	G	10,000,000+ ELECTRIC MILES DELIVERED SAFELY		100+ CHARGING SITES	
PROJECT DEVELOPMENT	FINANCING	TURN KEY EPC	PROJECT COMMISSIONING	ASSET MANAGEMENT/O&M	

Large-scale EV deployments at Offices, Schools, and Universities

Campbell Union HSD

(248 total: 38 deployed, 210 under construction)

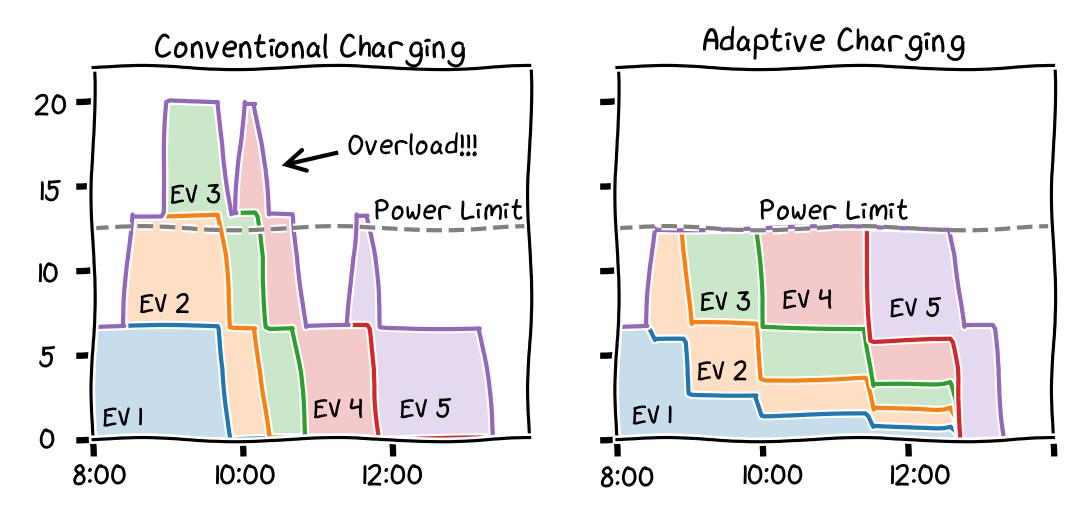
Los Altos SD (180 total: 52 deployed, 128 under construction)

ell Union HSD 38 deployed, 210 under c

Caltech

(138 total deployed)

Mountain View Los Altos UHSD (52 total deployed)



Municipal Universities **Real Estate** Sample PAJADENA CUSHMAN & WAKEFIELD Caltech LIFORNIA · WWW.CITYOFPASADENA.NET PowerFlex UCSF Hines UDR MGR Real Estate Clients UC San Diego City and County SUMMERHILL SAMERINE SAN of San Francisco Workplace Non-Profit Medium Duty Fleet Research Children's Hospital LOS ANGELES NATURAL Intuit HISTORY MUSEUM LOS ANGELES COUNTY Adobe Getty SAP Jet Propulsion Laboratory California Institute of Technology **~**L**(** LOS ANGELES ACCELERATOR 5 LGBT OSIsoft. LACMA CENTER" LABORATORY OFF THE GRID

PowerFlex

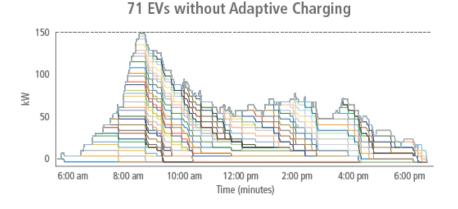
AN EDF RENEWABLES COMPANY

Driver flexibility allows us to do more with less...

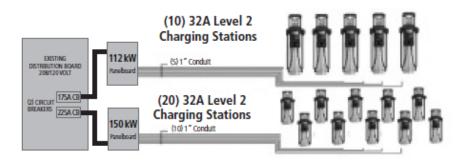
Infrastructure Options: 100 EVs per day

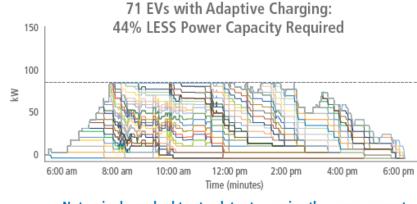
Level 1 Charging		Uncontrolled Level 2 Charging		Adaptive Level 2 Charging	
102 Ports		102 Ports		102 Ports	
200 kVA Transformer		680 kVA Transformer		200 kVA Transformer	
Demand Met:	75.4%	Demand Met:	99.9%	Demand Met:	99.8%
Cost:	\$0.28 / kWh	Cost:	\$0.35 / kWh	Cost:	\$0.23 / kWh
		30 Ports w/ Sw 200 kVA Transt			

 Demand Met:
 99.6%

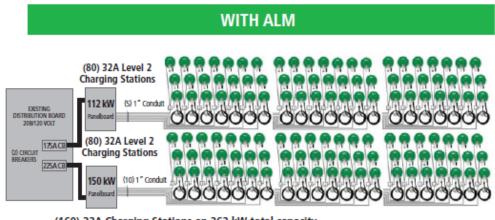

 Cost:
 \$0.256 / kWh

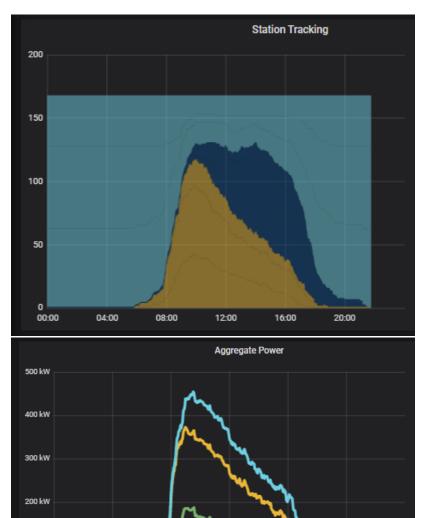
 Swaps:
 1,103 / month


_ _ _



Adaptive Load Management at Scale


WITHOUT ALM


Not a single car had to stay later to receive the same amount of energy as the chart above.

Actual data from Caltech

(160) 32A Charging Stations on 262 kW total capacity using UL916 Adaptive Load Management

Case Study: 168 Chargers

100 kW

0 W 🖢

00:00

04:00

08:00

12:00

16:00

20:00

• 168 chargers

- 118x Universal (J1772) x 6.6kW
- 50x Tesla x 16kW
- 1.578MW nameplate
 - Connected to 800A/480V panel (max load @80% = 532kW)
 - 3x capacity
 - No Interconnection Upgrade
- Cost: <\$3,000/station

Demand Response Example

📰 UCSD 15m Interval 🗸 12 2 < 🕐 Jan 16, 2020 00:00:00 to Jan 16, 2020 23:59:59 📏 Q 📿 🗸 15m Interval by EVSE — ct_response.mean {evse_type: AeroVironment, space_number: 28} — ct_response.mean {evse_type: AeroVironment, space_number: 2C} — ct_response.mean {evse_type: AeroVironment, space_number: 38} 140 kW — ct_response.mean {evse_type: AeroVironment, space_number: 3C} et_response.mean {evse_type: AeroVironment, space_number: 30} — ct_response.mean {evse_type: AeroVironment, space_number: 48} — ct_response.mean {evse_type: AeroVironment, space_number: 4C} — ct_response.mean {evse_type: AeroVironment, space_number: 4D} 120 kW — ct_response.mean {evse_type: AeroVironment, space_number: 5B} - ct_response.mean {evse_type: AeroVironment, space_number: 5C} — ct_response.mean {evse_type: AeroVironment, space_number: 5D} et_response.mean {evse_type: AeroVironment, space_number: EV1 21-22 ct_response.mean {evse_type: AeroVironment, space_number: EV1 22-24 100 kW ct_response.mean {evse_type: AeroVironment, space_number: EV1 25-27 ct_response.mean {evse_type: AeroVironment, space_number: EV1 26-28 ct_response.mean {evse_type: AeroVironment, space_number: EV1 29-31 - ct_response.mean {evse_type: AeroVironment, space_number: EV1 30-32 - ct_response.mean {evse_type: AeroVironment, space_number: EV1 33-35 80 kW ct_response.mean {evse_type: AeroVironment, space_number: EV1 34-36 - ct_response.mean {evse_type: AeroVironment, space_number: EV1 37-39 et_response.mean {evse_type: AeroVironment, space_number: EV1 38-40 - ct_response.mean {evse_type: Tesla, space_number: 1A} = ct_response.mean {evse_type: Tesla, space_number: 1B} 60 kW - ct_response.mean {evse_type: Tesla, space_number: 2A} = ct_response.mean {evse_type: Tesla, space_number: 3A} - ct_response.mean {evse_type: Tesla, space_number: 4A} — ct_response.mean {evse_type: Tesla, space_number: 5A} 40 kW 20 kW 06:00 05-00 07:00 08:00 09:00 12-00 14-00 15-00 16-00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Longer Dwell time = Max Smart Charging

Max Delivery: Load management delivered as much power as desired within the 75kW constraint

10am Floodgates: Charging maximized to transformer limits during 10am-2pm to optimize for incentives for consuming surplus solar energy

Peak Reduction: Reduced Peak by 40% (72kW to 42kW) while still delivering same amount of energy

LCFS Curve Following: Charging optimized under LCFS Time-of-Use Value curve

Education is still the biggest challenge...

- Managing user expectations
 - Charging slower does not mean there is a problem
 - Trust the algorithm
 - Managed charging means more ports and lower costs
- Engaging with local permitting officials
 - Load management is safe
 - Within electrical codes

What information is needed to evaluate EV management systems as non-wires alternatives?

- The key is high **temporal and spatial resolution**:
 - Ideal
 - Detailed feeder models
 - High resolution load data
 - Real-time measurements
 - Alternatively
 - Safe load envelopes to operate within
 - Fine-grained signals to follow
- Charging workload information
 - Real or statistical

Our Mission

Delivering renewable solutions to lead the transition to a sustainable energy future.

powerflex EDF renewables

Connect

•••

Zachary Lee Software Engineer - Algorithms zach@powerflex.com

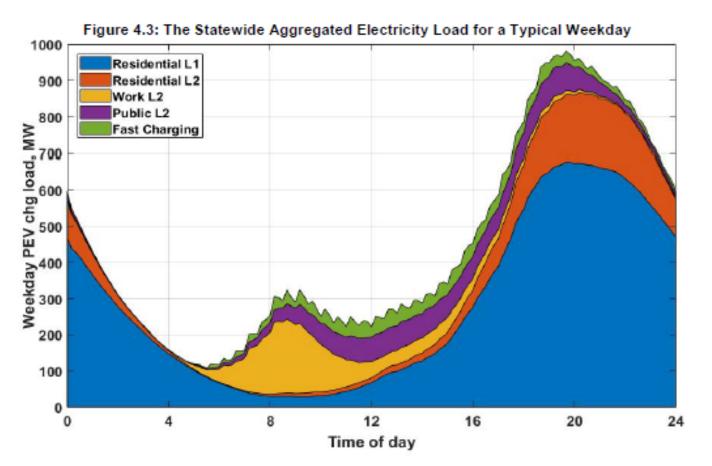
Ongoing Research Projects with Caltech

Non-wires Alternatives

Working with Pasadena Water and Power on optimal placement and control of stationary battery storage to defer feeder upgrades.

Open-Source Data + Simulator

Adaptive Charging Network Research Portal provides real data from large-scale charging sites and a simulator to try our new control algorithms.


ev.caltech.edu

Distribution Impacts

Investigating impacts of large-scale EV charging on distribution feeders including thermal and voltage issues.

1.3M CA PEVs need <u>13GWh</u> of electricity and <u>10x more plugs</u>

Table ES.1: Projections for Statewide PEV Charger Demand							
Demand for L2 Destination (Workplace and Public) Chargers (The Default Scenario)							
	Total PEVs	Lower Estimate (Chargers)	Higher Estimate (Chargers)				
As of 2017	239,328	21,502	28,701				
By 2020	645,093	53,173	70,368				
By 2025	1,321,371	99,333	133,270				

100,000 Chargers @\$15k/ea = \$1.5B \$15k/charger is <u>unsustainable</u>

Source: California Energy Commission and NREL

The Case for Full-Shift EV Parking

The True Cost of "Re-Parking"

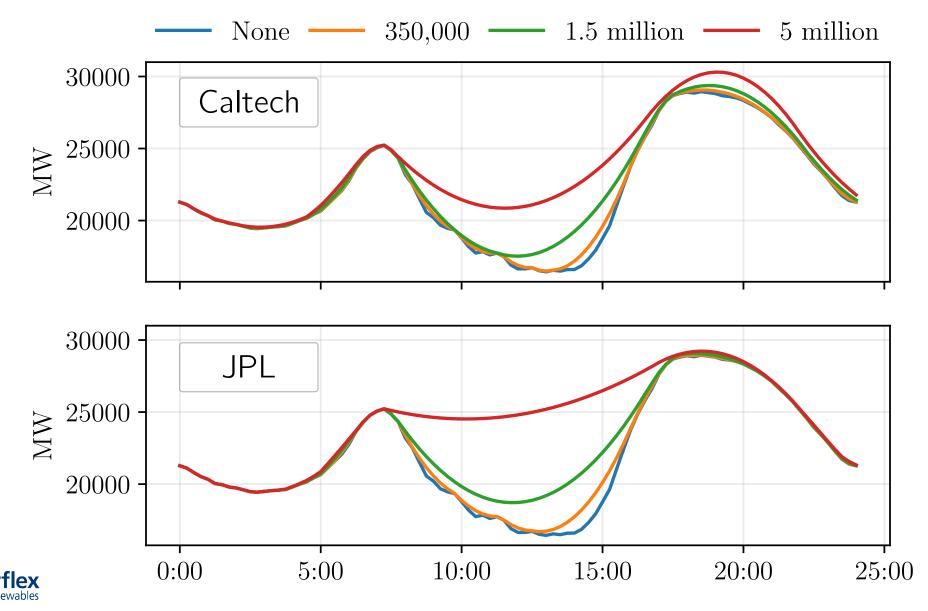
10m to walk to car, re-park, and walk back for both the first and second drive

Lost productivity per "Re-parking": 20m x 255 working days = 85hrs/yr

Across 100 EV chargers this translates to **8,500hrs**

At \$50/hr > that's **\$425,000/yr of lost** productivity

Disruptive to operations


"Sorry, I'm going to have to step out of surgery – I need to charge my car"

"Can we reschedule this meeting, I have to move my car"

Alleviating the duck curve with smarter charging

